Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 301: 113893, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34634725

RESUMEN

Amongst different climatic and anthropogenic drivers, water resources management can cause massive changes to the natural regime of a lake after its regulation, thereby affecting the quantity and quality of water intended for satisfying the multiple basin water requirements. Here, we investigate the multi-decadal variation of the water levels and outflows of Lake Garda, the largest in Italy, where the dam operational rules and the related basin water needs heavily altered the annual and seasonal trend of the lake regime since its regulation in 1951. Daily lake levels and outflows were first collected and digitized for the period 1888-2020, thus providing a unique database of 133 years that allowed a consistent comparison between natural and regulated periods. Statistical analyses highlighted a significant change of the inter-annual trend of the lake outflows, which passed from upward to downward after regulation, against a constant increasing trend of the water levels. Conversely, water levels showed a more remarkable shifts on a seasonal scale if compared to the outflows, revealing the influence of summer and winter basin water needs. Additional analyses on the inter-annual variation of the main downstream water demands regulated by the dam, i.e. the irrigation, hydropower and fluvial ecosystem requirements, outlined their relevance in changing the lake regime, influencing dam operational policies, which progressively limited the share of water released for ecosystem integrity. A comparison between the lake levels and outflows recorded for the pre-regulation and post-regulation periods of some selected European perialpine lakes finally highlighted different effects on the lake regime, drawing attention to the importance of defining the role of the dam operational policies within the current scenario of climate change and changing water demands.


Asunto(s)
Lagos , Recursos Hídricos , Cambio Climático , Ecosistema , Agua
2.
J Environ Manage ; 286: 112100, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33639426

RESUMEN

Restoration of spawning and juvenile habitats is often used to restore fish abundances in rivers, although often with unclear results. To study the effects of habitat limitations on the common barbel (Barbus barbus), a riverine litophilic cyprinid fish, an age-structured population model was developed. Using a Bayesian modeling approach, spawning and fry (0+ juvenile) habitat availability was integrated in the model in a spatially explicit way. Using Beverton-Holt and Ricker recruitment models, density dependence was incorporated in the spawning process and the recruitment of 0+ juveniles. Model parameters and their uncertainty ranges were obtained from reviewing the existing literature. The uncertainty of the processes was intrinsically accounted for by the inherently probabilistic nature of the Bayesian model. By testing various scenarios of habitat availabilities for the barbel, we hypothesize that improvement of the fish stock will be reached only at a well specified ratio of spawning to fry habitat. Model simulations revealed substantial abundance improvements at rather equal amounts of about 10% cover of both habitats, while even substantial improvements of either spawning or fry habitats only will result in little or no increase of abundance. Higher ratios of spawning to fry habitat were found to lower population recovery times. This work provides a tool that serves the assessment and comparison of river restoration scenarios as well as benchmarking rehabilitation targets in the planning phase. When targeting restoration of fish stocks, focusing only on one key life stage or process (such as spawning), without considering potential bottlenecks in other stages, can result in little to no improvement.


Asunto(s)
Ecosistema , Ríos , Animales , Teorema de Bayes , Peces , Dinámica Poblacional
3.
Sci Total Environ ; 612: 1266-1275, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28898932

RESUMEN

Within the past 30years there have been two major heatwave events (in 2003 and 2006) that broke 500-year-old temperature records in Europe. Owing to the growing concern of rising temperatures, we analyzed the potential response in a number of river sections that are subject to hydropeaking and thermopeaking through the intermittent release of water from hydropower stations. Thermopeaking in alpine streams is known to intermittently cool down the river water in summer and to warm it up in winter. We analyzed the response of river water temperature to air temperature during heatwaves at 19 gauging stations across Switzerland, using a 30-yr dataset at a 10-min resolution. Stations were either classified into "unpeaked" or "peaked" groups according to four statistical indicators related to hydropeaking and thermopeaking pressure. Peaked stations were exposed to reduced temporal variability in river water temperature, and it was determined that correlations between river water and air temperature were weaker for peaked stations compared with unpeaked stations. Similarly, peaked stations showed a much weaker response to heatwaves compared with unpeaked stations. It is important to note that this "cooling effect" created by hydro-thermopeaking was most pronounced during the two major heatwave events that took place in 2003 and 2006. Furthermore, results from thermal stress events on the growth of a typical cold eurythermic fish species (brown trout) increased continuously in rivers subject to peaked station water release during heatwaves. While hydropower operations that take place high up on mountains releasing hypolimnetic water may mitigate the adverse effects of heatwaves on downstream alpine river ecosystems locally, our results show the complexity of an artificial physical template associated with flow regime regulation in alpine streams.

4.
Sci Total Environ ; 579: 1035-1049, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27887836

RESUMEN

Cultural and recreational river ecosystem services and their relations with the flow regime are still poorly investigated. We develop a modelling-based approach to assess recreational flow requirements and the spatially distributed river suitability for white-water rafting, a typical service offered by mountain streams, with potential conflicts of interest with hydropower regulation. The approach is based on the principles of habitat suitability modelling using water depth as the main attribute, with preference curves defined through interviews with local rafting guides. The methodology allows to compute streamflow thresholds for conditions of suitability and optimality of a river reach in relation to rafting. Rafting suitability response to past, present and future flow management scenarios can be predicted on the basis of a hydrological model, which is incorporated in the methodology and is able to account for anthropic effects. Rafting suitability is expressed through a novel metric, the "Rafting hydro-suitability index" (RHSI) which quantifies the cumulative duration of suitable and optimal conditions for rafting. The approach is applied on the Noce River (NE Italy), an Alpine River regulated by hydropower production and affected by hydropeaking, which influences suitability at a sub-daily scale. A dedicated algorithm is developed within the hydrological model to resemble hydropeaking conditions with daily flow data. In the Noce River, peak flows associated with hydropeaking support rafting activities in late summer, highlighting the dual nature of hydropeaking in regulated rivers. Rafting suitability is slightly reduced under present, hydropower-regulated flow conditions compared to an idealized flow regime characterised by no water abstractions. Localized water abstractions for small, run-of-the-river hydropower plants are predicted to negatively affect rafting suitability. The proposed methodology can be extended to support decision making for flow management in hydropower regulated streams, as it has the potential to quantify the response of different ecosystem services to flow regulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...